
Istio – An introduction for
developers

WW Developer Advocacy Team

Benefits of Kubernetes

2

• Automated scheduling and scaling

• Zero downtime deployments

• High availability and fault tolerance

• A/B Testing

IBM Developer

Manager

Scheduler

Replicator

Node

Daemon

Containers

Node

Daemon

Containers

Node

Daemon

Containers

Etcd DBImage
Repository

Microservice Challenges

Controlling Traffic
1. How do I do canary testing?
2. How do I A/B testing?

Resilient Services
1. How do I implement circuit breakers?
2. How do I test faults in the system?
3. How do I limit set rate limits for each service?

Telemetry
1. How can I trace a request through my system of multiple

services
2. How can I perform monitoring in a distributed deployment?

Security
1. How can I apply policies across services?

ß All of these problems are common across services no matter
the runtime.

ß It would be cool if we could solve these problems in a standard
way without changing application code

IBM Developer

Service Mesh
and
Istio Architecture

What is a service mesh?

5

A service mesh provides a transparent and
language-independent way to flexibly and
easily manage the communication
between microservices.

IBM Developer

Istio is a service mesh that supports
managing traffic flows between
microservices, enforcing access policies,
and aggregating telemetry data, all
without requiring changes to the
microservice code.

IBM Developer

IBM Developer

Traffic control,
Discovery, Load
Balancing, Resiliency

Encryption (TLS,
mTLS),
Authentication,
Authorization of
Service-to-Service
communication

Policy Enforcement Metrics, Logging,
Tracing

Current version: Istio 1.9

Weaving the
mesh

Outbound features:
❖ Service authentication
❖ Load balancing
❖ Retry and circuit breaker
❖ Fine-grained routing
❖ Telemetry
❖ Request Tracing
❖ Fault Injection

Inbound features:
❖ Service authentication
❖ Authorization
❖ Rate limits
❖ Load shedding
❖ Telemetry
❖ Request Tracing
❖ Fault Injection

svcA

sidecarsidecar

Service A

svcB

sidecar

Service B

External
Services

HTTP/1.1, HTTP/2,
gRPC, TCP with or

without TLS

HTTP/1.1,
HTTP/2,
gRPC, TCP
with or
without TLS

Internet

Weaving the meshWeaving the mesh

IBM Developer

Istio Architecture
Since Istio 1.5, the control plane functionality is packaged
into a single binary called Istiod.

Pilot
• Service discovery.
• Listens for your configuration around traffic routing,
circuit-breakers and fault injection.
• Converts that to low-level routing rules, and distributes
those to envoys at runtime.

Galley
• Configuration

Citadel
• Security: encryption, mTLS, authentication and
authorization, access policies, certificate authority, network
configuration, auditing tools.

WebAssembly (Mixer)
• Extensibility for Istio proxy (Envoy):

• Efficiency, Function (to enforce policy, collect
telemetry, payload mutations), Isolation,
Configuration, Operator, Extension developer.

• Metrics (Proxy, Service, Control Plane level metrics),
Distributed Traces (with support for Zipkin, Jaeger,
Lightstep and Datadog), Access Logs.

IBM Developer

The Sidecar

Envoy

Envoy is an L7 proxy deployed as sidecar to services, adding:

• Dynamic service discovery
• Load balancing
• TLS termination
• HTTP/2 and gRPC proxies
• Circuit breakers
• Health checks
• Staged rollouts with %-based traffic split
• Fault injection
• Rich metrics

IBM Developer

https://www.envoyproxy.io

At its core, Envoy is an L3/L4 network
proxy. A pluggable filter chain
mechanism for gRPC, MongoDB,
DynamoDB, Redis, Postgres. Envoy
supports an additional HTTP L7 filter
layer.

Installing the Sidecar
• Manual installation

istioctl kube-inject -f guestbook-deployment.yaml
kubectl get pod -l app=guestbook
NAME READY STATUS RESTARTS AGE
guestbook-64c6f57bc8-f5n4x 2/2 Running 0 24s

• Automatic installation. When you set istio-injection=enabled label on a namespace, a mutating admission
controller webhook (Istio injection webhook) is enabled

kubectl label namespace default istio-injection=enabled --overwrite

Traffic Management

• In order to direct traffic within your mesh, Istio populates its own service registry, Istio connects to a service discovery system. In
Kubernetes, Istio automatically detects the services and endpoints.

• Envoy proxies use a round-robin load balancing to distribute traffic.

• VirtualServices and DestinationRules, are the key building blocks of Istio’s traffic routing, extending Envoy.

• A VirtualService uses routing rules to send traffic to appropriate destinations. A routing rule consists of a destination and 0 or
more match conditions.

• Gateways control ingress and egress traffic. A Gateway is bound to the Istio VirtualService.

• A service entry can add an entry to the service registry to redirect and forward traffic for external destinations such as APIs
consumed from the web or legacy infrastructure, add retry, timeout and fault injection policies, add services from a different
cluster.

• You can add failure recovery (timeouts, retries, circuit breakers with a connection pool) and fault injection features to a Virtual
Service.

https://istio.io/latest/docs/concepts/traffic-management/
IBM Developer

https://istio.io/latest/docs/concepts/traffic-management/

Observability

IBM Developer

Prior to Istio 1.6, Mixer was the Istio component
responsible for providing an adapter model to
integrate with infrastructure backends, like policy
controls and telemetry collection.

In Istio 1.6 a new method for integration with
telemetry addons was introduced.

Integrations:

• Cert-manager
• Grafana for Istio dashboards,
• Jaeger,
• Kiali
• Prometheus,
• Zipkin

Telemetry Tools

IBM Developer

Metrics

Service Mesh Visualization

Dashboard for Metrics

Request Tracing

Istio uses the Envoy proxy to generate the following types of
telemetry:

• Metrics,
• Service level metrics, based on the four golden

signals of monitoring (latency, traffic, errors, and
saturation).

• Proxy level metrics, with full record of all inbound
and outbound requests.

• Control plane metrics, self-monitoring metrics
• Distributed traces, for call flows and service dependencies.
• Envoy Access logs, configurable set of formats, providing

operators with full control of the how, what, when and
where of logging.

You can configure metrics in the EnvoyFilter. Configuring
custom statistics involves two sections of
the EnvoyFilter: definitions and metrics.

Security components:
• Certificate Authority (CA) for key and certificate management,
• Configuration API Server distributes to proxies:
• Authentication policies,
• Authorization policies,
• Secure naming information,

• Proxies work as Policy Enforcement Points (PEPs) to secure communication,
• Envoy proxy extensions to manage telemetry and auditing.

Istio security features:
• Istio Identity, using service identity like ServiceAccounts and Authorization

Policies,
• Strong identity using X509 certificates, Istio agents run alongside Envoy proxy

and work with istiod to automate key and certificate rotation,
• Authentication Policies,
• Peer authentication: mTLS
• Request authentication: ORA Hydra, Keycloak, Auth0, Firebase Auth, Google

Auth
• Authorization Policies

IBM Developer

Security

IBM Developer

Security

Lifecycle of a Request

Lifecycle of a Request

Service A places a call to http://service-b.

Client-side Envoy intercepts the call.

Envoy consults config (previously
received from Pilot) to know how/where
to route call to service B (taking into
account service discovery, load
balancing, and routing rules), forwards
the call to the right destination.

Mixer

Service A Service B

proxy proxy

Pilot Citadel

IBM Developer

http://service-b/

Life of a request

Envoy forwards request to appropriate
instance of service B. There, the Envoy
proxy deployed with the service
intercepts the call.

Mixer

Service A Service B

proxy proxy

Pilot Citadel

HTTP/1.1,
HTTP/2, gRPC or

TCP -- with or
without mTLS

IBM Developer

Life of a request

Server-side Envoy checks with Mixer to
validate that call should be allowed (ACL
check, quota check, etc).

Mixer

Service A Service B

proxy proxy

Pilot Citadel

Policy checks,
telemetry

IBM Developer

Life of a request

Mixer checks with appropriate adaptors
(policy engine, quota adaptor) to verify
that the call can proceed and returns
true/false to Envoy

Mixer

Service A Service B

proxy proxy

Pilot Citadel

Policy checks,
telemetry

Po
lic

y
En

gi
ne

Q
uo

ta

Ad
ap

to
r

IBM Developer

Life of a request

Server-side Envoy forwards request to
service B, which process request and
returns response

Mixer

Service
A

Service
B

proxy proxy

Pilot Citadel

IBM Developer

Life of a request

Envoy forwards response to the original
caller, where response is intercepted by
Envoy on the caller side.

Mixer

Service A Service B

proxy proxy

Pilot Citadel

IBM Developer

Life of a request

Mixer

Service A Service B

proxy proxy

Pilot Citadel

Lo
gg

in
g

pl
ug

in

M
on

ito
rin

g
pl

ug
in

Envoy reports telemetry to Mixer, which
in turn notifies appropriate plugins

IBM Developer

Life of a request

Client-side Envoy forwards response to
original caller.

Mixer

Service A Service B

proxy proxy

Pilot Citadel

IBM Developer

Life of a request

Mixer

Service A Service B

proxy proxy

Pilot Citadel

Lo
gg

in
g

pl
ug

in

M
on

ito
rin

g
pl

ug
in

Client-side Envoy reports telemetry to
Mixer (including client-perceived
latency), which in turn notifies
appropriate plugins

IBM Developer

At Anytime

Pilot listens to your configuration, such
as routing rules, circuit breaking and fault
injection. Converts to low-level config
(routing rules) and distributes to proxy
side cars

Mixer

Service A Service B

proxy proxy

Pilot Citadel

IBM Developer

At Anytime

Citadel distributes keys and certificates
as Kubernetes Secrets available to
sidecar containers

Mixer

Service A Service B

proxy proxy

Pilot Citadel

IBM Developer

Bookinfo Sample Microservices Application (without Istio)

IBM Developer

Bookinfo Sample Microservices Application (with Istio)

Service Entry

IBM Developer

Istio Examples

Canary Testing

Route user:jason to reviews:v2
Others still get reviews:v1

Request Routing

50% -> v1
50% -> v3

Traffic Shifting

5000 requests per 1s
ratings: 100 requests per 1s

Rate Limits

Max 1 concurrent
connection & request

Circuit Breaking

Inject 7 second delay

Delay Injection

jason: Return with Error 500

Fault Injection

